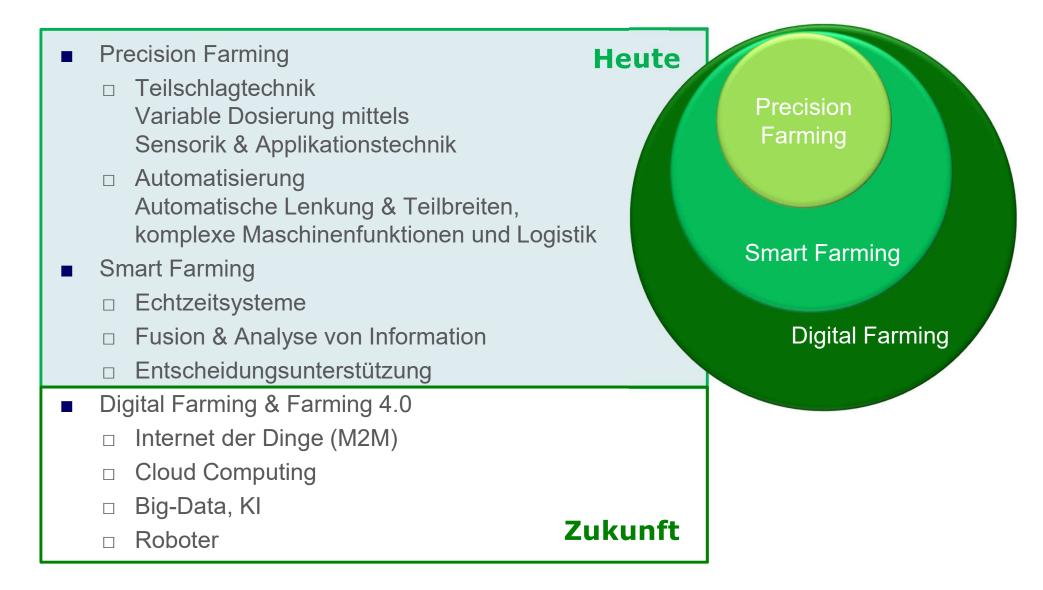


Automatisierung für einen zukünftigen Pflanzenbau

Presseveranstaltung im Vorfeld der DLG-Feldtage 2022 Donnerstag, 28. April 2022, Versuchsgut Kirschgartshausen

Prof. Dr. Hans W. Griepentrog

Gliederung


- Einleitung
- Nachhaltige Produktion
- Neue Mechanisierung

Definition Begriffe

Zertifizierungssystem nachhaltige Landwirtschaft (1)

Bewertung der Bereiche:

- 1. Stickstoff-Saldo
- 2. Phosphor-Saldo
- 3. Humusbilanz-Saldo
- 4. Treibhausgase
- 5. Pflanzenschutz
- 6. Biodiversität
- 7. Bodenschutz
- 8. Wasserschutz

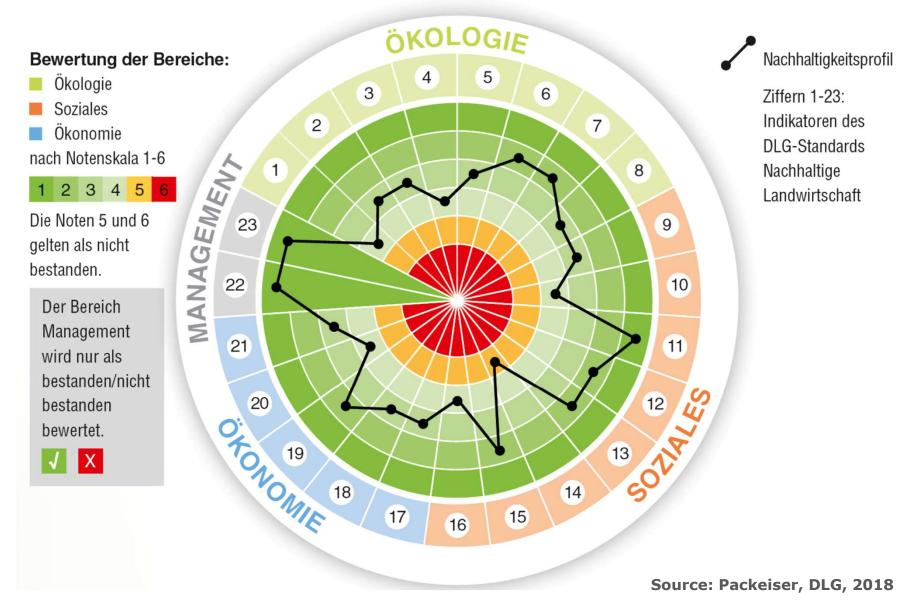
Soziales

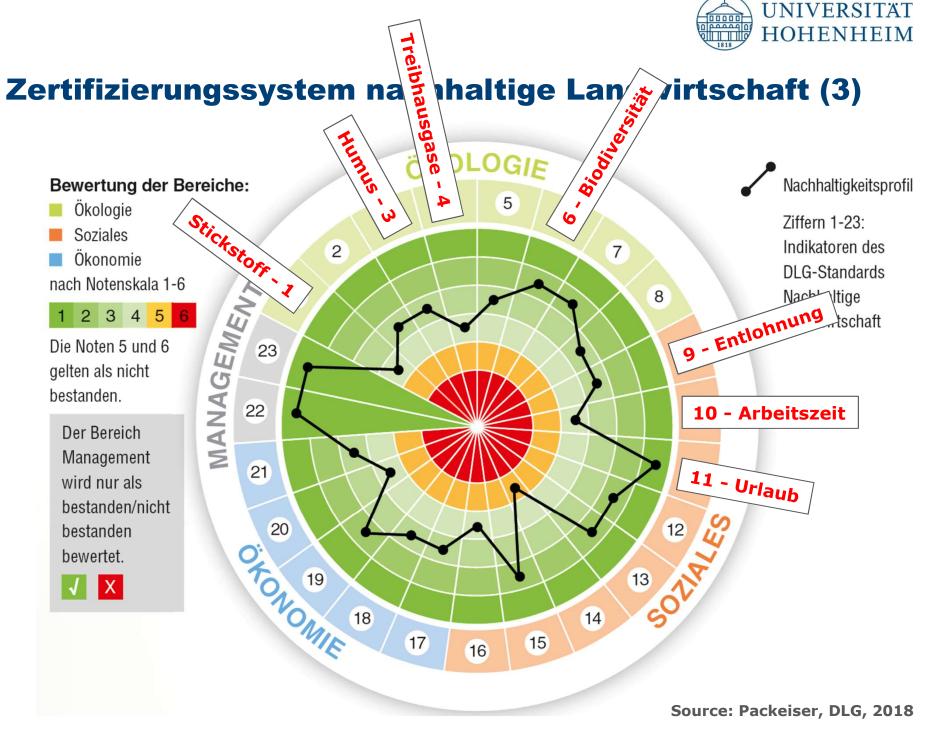
- 9. Entlohnung
- 10. Arbeitszeit
- 11. Urlaub
- 12. Aus- und Weiterbildung
- 13. Arbeitnehmerbelange
- 14. Arbeitgeber
- 15. Arbeits- und Gesundheitsschutz
- Gesellschaftliches Engagement

Ökonomie (fakultativ)

- Ordentliches kalkulatorisches Ergebnis
- 18. Netto-Cash-Flow
- 19. Ausschöpfung der langfristigen Kapitaldienstgrenze
- 20. Gewinnrate
- 21. Eigenkapitalquote

Management


- 22. Betriebskodex
- 23. Risikomanagement


Datenerfassung - Export aus digitaler Ackerschlagkartei! (FMIS)

16

Zertifizierungssystem nachhaltige Landwirtschaft (2)

Mechanisierung – Zwei Robotik-Strategien heute (1) Roboter mit konventionellen Anbaugeräten

Mechanisierung – Zwei Robotik-Strategien heute (2) Roboter für spezifische Anwendungen

Mechanisierung – Zwei Robotik-Strategien heute (3) Vergleich

- Systeme mit konventionellen Anbaugeräten
 - □ Hohe Motorleistung (100-500 kW)
 - Übliche Maschinengewichte
 - Standard Kopplungssysteme(3-Punkt, Hydraulik & Elektrik)
 - ISOBUS
 - □ Große Flächenleistungen

 - Bestandespflege
 - Teilschlagtechnik (PF)
 - Automatische Lenkungen & Teilbreiten



- Systeme mit spezifischen Anwendungen
 - □ Geringe Motorleistung (5-50 kW)
 - Leichtbau
 - Effizienter Bodenschutz
 - Maschine anwendungsspezifisch
 - Benötigt Schwarm für hohe Flächenleistungen (skalierbar)
 - Anpassbar Betriebsgrößen
 - Skalierbare Kosten
 - Bestandespflege
 - Pflanzenindividuell (hohe räumliche Auflösung)

Pflanzenbausysteme der Zukunft (1) Biodivers – Bodenschonend – Digital

- Kleinräumig diversifizierte & digitalisierte Pflanzenbausysteme
- Klimaresilientes Produktionssystem
- Digitalisierung und Robotik als Mittel zum Zweck, nicht zum Selbstzweck!
- Interdisziplinär und systemorientiert

Quelle: M. Gandorfer Digital Farming Group Bayerische Landesanstalt für Landwirtschaft

Pflanzenbausysteme der Zukunft (2) Strip-Intercropping Feldlabor

Quelle:
M. Gandorfer
Digital Farming Group
Bayerische
Landesanstalt für Landwirtschaft

Digital Farming - Neue Mechanisierung - Robotik

Digital Farming - Biologisierung vs. Technikdominanz

Zusammenfassung

- Automatisierung hat hohen technischen Standard
 - Precision Farming und Smart Farming sind auf den Betrieben angekommen,
 aber nicht sehr verbreitet
- Robotik und Digitalisierung erlauben neue Möglichkeiten der Produktionsgestaltung
 - Bodenschutz durch leichte Fahrzeuge
 - Verstärkter Precision Farming-Effekt durch hohe räumliche Auflösungen und individuelle Pflanzenansprache
 - Keine Vorteile mehr der 'großen ausgeräumten Schläge'
 - □ Wiedereinführung von Landschaftselementen und Agrarbiotopen
 - Maschinen sind in ihrer Funktion skalierbar, damit flexibel und anpassbar
- Paradigmenwechsel: Technik passt sich Natur an, nicht umgekehrt